Grade 9/10 Math Circles
 March 27, 2024
 Probability II - Solutions

In-Lesson Exercises

1. Dice rolls are independent.
(a) $P($ even $) \cdot P($ odd $)=1 / 2 \cdot 1 / 2=1 / 4$
(b) $P(1) \cdot P\left(1^{C}\right)=P(1) \cdot(1-P(1))=1 / 6 \cdot(1-1 / 6)=5 / 36$
2. Choosing with replacement is independent.
(a) $P($ red $) \cdot P($ green $)=2 / 10 \cdot 3 / 10=6 / 100$
(b) P (blue) $\cdot P($ blue $)=5 / 10 \cdot 5 / 10=25 / 100$
3. Let's write $D=$ you roll doubles and $S=$ the rolls sum to at least 10 .

There are six ways to roll doubles, out of 36 total rolls, so $P(D)=6 / 36=1 / 6$.
There are two ways to roll doubles that sum to at least $10(5 / 5$ and $6 / 6)$, so $P(D \cap S)=2 / 36$.

$$
P(S \mid D)=\frac{P(D \cap S)}{P(D)}=\frac{2 / 36}{1 / 6}=1 / 3
$$

4. Since $B \subseteq A$, we know $A \cap B=B$.

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(B)}{P(B)}=1
$$

5. We already found the probability of getting a pair of red socks in the lesson, so now we just need to find the probability of getting a pair of black socks and a pair of white socks. The probability of getting any pair will be the sum of the probabilities of getting a pair of each colour.

Let $B 1=$ the first sock is black, $B 2=$ the second sock is black, $W 1=$ the first sock is white, and $W 2=$ the second sock is white.

$$
\begin{gathered}
P(B 1 \cap B 2)=P(B 1) \cdot P(B 2 \mid B 1)=\frac{6}{20} \cdot \frac{5}{19}=\frac{30}{380} \\
P(W 1 \cap W 2)=P(W 1) \cdot P(W 2 \mid W 1)=\frac{4}{20} \cdot \frac{3}{19}=\frac{12}{380}
\end{gathered}
$$

So, we see that

$$
P(\text { pair })=\frac{30}{380}+\frac{90}{380}+\frac{12}{380}=\frac{132}{380} \approx 35 \%
$$

6. Let B be the event that someone plays board games and let V be the event that someone plays video games. We know $P(V \mid B)=5 / 10, P\left(V \mid B^{C}\right)=2 / 10$, and $P(B)=7 / 10$. The complement rule says $P\left(B^{C}\right)=3 / 10$. So,

$$
P(V)=P(V \mid B) \cdot P(B)+P\left(V \mid B^{C}\right) \cdot P\left(B^{C}\right)=\frac{5}{10} \cdot \frac{7}{10}+\frac{2}{10} \cdot \frac{3}{10}=\frac{41}{100}
$$

7. Let C mean someone likes cookies and B mean someone likes brownies. We want to find $P(B \mid C)$.
We know that $P(C)=\frac{8}{10}, P(B)=\frac{4}{10}$, and $P(C \mid B)=\frac{9}{10}$. Using Bayes' Theorem,

$$
P(B \mid C)=\frac{P(C \mid B) \cdot P(B)}{P(C)}=\frac{\frac{9}{10} \cdot \frac{4}{10}}{\frac{8}{10}}=\frac{36}{80}=0.45
$$

